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Abstract

This paper deals with the modelling of the behaviour of plain concrete in triaxial compression using the theory of

plasticity. The aim is to model the load resistance and the deformation capacity in uniaxial, biaxial and triaxial

compression by means of few parameters, which can be determined easily.

A novel hardening law based on a non-associated flow rule and the volumetric plastic strain as hardening parameter

is combined with a yield surface proposed by Men�eetrey and William (1995). The novel hardening and softening law
differs from a classic strain-hardening law, as instead of the length of the plastic strain vector only the volumetric

component of the latter is used as a hardening parameter. Thus, the non-linearity of the plastic potential is utilized to

describe the influence of multiaxial compression on the deformation capacity and no additional ductility measure is

required.

The implementation and calibration of the novel hardening law are discussed. The prediction of the model is

compared to results of uniaxial, biaxial and triaxial compression tests. It is shown that with one set of calibration

parameters a good prediction of the load resistance and the deformation capacity for all three types of compression tests

can be achieved.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multiaxial stress states govern in many cases the load resistance of concrete structures. It is known that
under multiaxial compression the load resistance and the deformation capacity of concrete are increased.
Multiaxial compression stress states are often activated by prevented deformations. There is a strong in-
teraction of the non-linear deformations and the activation of confining stresses. Hence, a realistic de-
scription of the deformations of concrete in triaxial compression is as important as the formulation of the
strength envelope.
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Both biaxial and triaxial compressive stress states occur in existing concrete structures. Often it is not
possible to exclude one of these stress states a priori, e.g. due to cracking during the loading process. The
load resistance and the deformation capacity increase for both biaxial and triaxial compression stress states.
In the triaxial case, however, the increase is very significant. Consequently, it is required that a model can
describe the load resistance and the deformation capacity of the material both in mainly biaxial and in
triaxial stress states.
In the present study, the theory of plasticity is used to model the behaviour of plain concrete subjected to

multiaxial compressive loading. The behaviour of concrete in compression is characterized by inelastic

Nomenclature

A parameter for the plastic potential
B parameter for the plastic potential
De elastic stiffness matrix
Dep elastic–plastic stiffness matrix (consistent tangent modulus)
E Young�s modulus
ep deviatoric plastic strain vector
f yield surface
fc strength of concrete in uniaxial compression
ft strength of concrete in uniaxial tension
fr derivation of the yield surface with respect to the stress
g plastic potential
gr derivation of the plastic potential with respect to stress
grr second derivation of the plastic potential with respect to stress
I1 first invariant of the stress tensor
J2 second invariant of the deviatoric stress tensor
J3 third invariant of the deviatoric stress tensor
Q special matrix defined in Eq. (20)
qhðjÞ hardening function
qsðjÞ softening function
R special matrix defined in Eq. (21)
r backward-Euler corrector
dij; d Kronecker delta
epij; e

p plastic strain tensor, plastic strain vector
epv volumetric plastic strain
j hardening parameter
_kk;Dk plastic multiplier
dk variation of the plastic multiplier
m Poisson�s ratio
q unified co-ordinate in the Haigh–Westergaard stress space
h co-ordinate in the Haigh–Westergaard stress space
rtrij ; r

tr trial stress tensor, trial stress vector
rij; r stress tensor, stress vector
dr variation of the stress vector
n unified co-ordinate in the Haigh–Westergaard stress space
w inclination of the plastic strain
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deformations. Therefore, the split of strains into elastic and plastic parts within the theory of plasticity is of
advantage. The evolution of the plastic part of the strains is determined by the gradient of the plastic
potential.
Hardening and softening of the material can be described by means of the change of the size and location

of the yield surface, which is controlled by the hardening parameter. Commonly, the length of the plastic
strain vector is used as hardening parameter, i.e. to control the size of the yield surface.
However, this hardening parameter is not suitable to describe the increase of plastic deformations in

multiaxial compression stress states. Therefore, formulations in which the hardening parameter is a
scaled form of the length of the plastic strain, depending on the stress states, were introduced in the
literature. Scaling functions based on the hydrostatic pressure were introduced by Etse and Willam
(1994), Malvar et al. (1997) and Men�eetrey (1994). The major principal stress component was utilized, for
example, by Pivonka et al. (2000). A hardening function depending on the intermediate principal stress
component was introduced by Barros (2001). Johansson and �AAkesson (2002) used the mean of the two
major principal stresses to describe the influence of confinement on both strength and deformation be-
haviour.
In the novel hardening law proposed in this study, the influence of multiaxial stress states on the de-

formation capacity is achieved by introducing a modified strain-hardening parameter. Instead of the length
of the plastic strain vector, the volumetric part of the latter is used. Or in terms of the theory of invariants,
instead of the second invariant, the first invariant of the plastic strain tensor is used. In combination with a
non-linear plastic potential the deformation capacity in multiaxial compression can be described. This
hardening law is combined with a yield surface based on the Hoek and Brown failure criterion, which
represents the strength in both triaxial and biaxial compression stress states. Consequently, it is expected to
be able to model the load resistance and the deformation capacity in uniaxial, biaxial and triaxial com-
pression by means of one calibration.

2. Constitutive modelling

The plasticity theory proposed in this study consists of a novel hardening law, which describes the
deformation capacity in multiaxial compression, combined with a yield surface proposed by Men�eetrey and
Willam (1995). Both the plastic potential within the hardening law, and the yield surface, are constituted by
using the unified co-ordinates in the Haigh–Westergaard stress space (see e.g. Chen and Han (1988)) which
are based on the stress invariants.
The three unified co-ordinates n, q and h are defined as

n ¼ I1ffiffiffi
3

p
fc
; I1 ¼ dijrij; dij ¼ 1; if i ¼ j and dij ¼ 0; if i 6¼ j; ð1Þ

q ¼
ffiffiffiffiffiffiffi
2J2

p

fc
; J2 ¼

1

2
sijsij; sij ¼ rij �

1

3
dijrkk; ð2Þ

cos 3h ¼ 3
ffiffiffi
3

p

2

J3
J 3=22

; J3 ¼
1

3
sijsjkski: ð3Þ

The geometrical interpretation is shown in Fig. 1.
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2.1. Yield surface

A three-parameter yield surface, which depends on three stress invariants and all principal stress com-
ponents, is used. It is an extension of the Hoek and Brown failure criterion and was proposed by Men�eetrey
and Willam (1995). It has the form

f ¼ ð
ffiffiffiffiffiffiffi
1:5

p
qÞ2 þ qhðjÞm

qffiffiffi
6

p rðh; eÞ
�

þ nffiffiffi
3

p
�
� qhðjÞqsðjÞ6 0; ð4Þ

where m is defined as

m ¼ 3 f
2
c � f 2t
fcft

e
eþ 1 ð5Þ

and the elliptic function as

Fig. 1. Haigh–Westergaard stress space.
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rðh; eÞ ¼ 4 1� e2ð Þ cos2 h þ 2e� 1ð Þ2

2 1� e2ð Þ cos h þ 2e� 1ð Þ 4 1� e2ð Þ cos2 h þ 5e2 � 4e½ 	1=2
: ð6Þ

The elliptic function rðh; eÞ describes the out-of-roundness of the deviatoric section and is controlled by the
eccentricity e. The three calibration parameters are the strength in uniaxial compression fc, the strength in
uniaxial tension ft and the eccentricity e. The calibration of the eccentricity e is illustrated in Section 4.
The surface possesses parabolic meridians, as shown in Fig. 2, and the deviatoric sections change from

triangular shapes at low confinement to almost circular shapes at high confinement, as shown in Fig. 3. In
this way the change from quasi-brittle to ductile behaviour with increasing hydrostatic pressure can be
described. The surface is smooth and convex, except the point of equitriaxial tension, where the parabolic
meridians intersect the hydrostatic axis.

2.2. Novel hardening law and non-associated flow rule

The novel hardening law presented in this study describes the influence of multiaxial stress states on the
deformation capacity. This is achieved by combining the volumetric plastic strain as hardening parameter
with a non-linear plastic potential.
The evolution of the plastic strain rate is determined by the flow rule

_eepij ¼ _kk
og
orij

: ð7Þ

The flow rule is non-associated, meaning that the form of the plastic potential differs from the form of the
yield surface. It has a quadratic form and is constituted, using the co-ordinates in the Haigh–Westergaard
stress space, as

Fig. 2. The yield surface in the q0–n0 plane. The compressive meridian at h ¼ p=3 and the tensile h ¼ 0 are presented.
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g ¼ �A
qffiffiffiffiffiffiffiffiffi
qðjÞ

p
 !2

� B
qffiffiffiffiffiffiffiffiffi
qðjÞ

p þ nffiffiffiffiffiffiffiffiffi
qðjÞ

p ¼ 0: ð8Þ

The two parameters A and B are determined by means of the axial strain at maximum stress in uniaxial
compression and in a triaxial compressive state. The determination is described in detail in Section 4.
The hardening parameter is the volumetric component of the plastic strain increment:

_jjð _eepÞ ¼ _eepv ¼ dij _ee
p
ij ¼ _kkdij

og
orij

¼ _kk

ffiffiffi
3

pffiffiffiffiffiffiffiffiffi
qðjÞ

p
fc
; ð9Þ

where dij is the Kronecker delta, defined in the third term of Eq. (1). Thus, the hardening parameter de-
pends entirely on the plastic strain. This is one of the main differences from other plasticity theories in
which the hardening variable depends on the plastic strain and the stress state, as discussed in Section 1.
The hardening/softening law has the form qðjÞ ¼ ðrcðjÞ=fcÞ2, where rc is the stress in uniaxial com-

pression and j the hardening parameter, which is the volumetric component of the corresponding plastic
strain vector. The cohesive strength and the friction parameter m, within the formulation of the yield
surface in Eq. (4), are uncoupled so that they can be adjusted separately to control hardening and softening.
Therefore, the hardening/softening function qðjÞ is split up into one function concerning the hardening,
qhðjÞ, and one concerning the softening, qsðjÞ:

qðjÞ ¼ qhðjÞqsðjÞ; ð10Þ

as shown in Fig. 4. By means of the split, residual strength in multiaxial compression is provided, as il-
lustrated in Figs. 5 and 6.

Fig. 3. The shape of the yield surface in the deviatoric plane for different hydrostatic stresses.
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The plastic potential in Eq. (8) describes the deformation capacity of plain concrete in multiaxial
compression. For dominant tensile loading (r1 þ r2 þ r3 > 0), however, the deformation capacity cannot
be described accurately with the chosen plastic potential. Even though the proposed theory is focused on
compression loading, the novel hardening parameter can also be used to describe concrete in tension, if a
more enhanced form of plastic potential is chosen.

Fig. 5. Evolution of the compressive meridian (h ¼ p=3) and the tensile meridian (h ¼ 0) of the yield surface in hardening.

Fig. 4. Split of the hardening function into a hardening and softening part.
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3. Numerical implementation

A backward-Euler algorithm is applied for the constitutive integration and combined with a tangent
modulus, which is consistent with the algorithm. The algorithm was studied in detail by Zeng et al. (1996).
The backward-Euler algorithm is based on the operator split technique, which was introduced by Simo and
Ortiz (1985). The consistent tangent modulus was introduced by Simo and Taylor (1985).
The algorithm for each integration point for a given strain state can be summarized by means of the

following steps:

(1) Compute the trial stress

rtr ¼ De eð � epn�1Þ: ð11Þ
(2) Control the yield condition

f ¼ f rtr; qn�1ð Þ: ð12Þ
If f P 0, go to (3)

r ¼ rtr; ð13Þ

Dep ¼ De: ð14Þ
(3) Initial return:

HðjÞ ¼ of
oq

oq
oj

dTgr; ð15Þ

Dk ¼ f rtrð Þ
frD

egr � HðjÞ ; ð16Þ

Fig. 6. Evolution of the compressive meridian (h ¼ p=3) and the tensile meridian (h ¼ 0) of the yield surface in softening.
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rn ¼ rtr � DkDegr: ð17Þ
(4) Iterative return:
(4.1) Control yield condition and compute the backward-Euler corrector

f ¼ f rn; qn�1ð Þ; ð18Þ

r ¼ r � rtrð � DkDegrÞ; ð19Þ

Q ¼ Iþ DkDegrr; ð20Þ

R ¼ Q�1De: ð21Þ

(4.2) Control the convergence. If jrj6 10�10 and f 6 10�10, go to (5)
(4.3) Further return is required:

HðjÞ ¼ of
oq

oq
oj

dTgr; ð22Þ

dk ¼ f ðrÞ � frQ
�1r

fTrRgr � HðjÞ
; ð23Þ

dr ¼ �Q�1r� dkRgr: ð24Þ
(4.4) Return to (4.1)

(5) Update the state variables ep and j
(6) Compute the consistent tangent modular matrix Dep

Dep ¼ R I

�
� grfrR

frRgr � HðjÞ

�
: ð25Þ

4. Calibration

One aim of the combination of the novel hardening law with the non-linearity of the plastic potential is
to reduce the number of material parameters needed to calibrate the constitutive model. This combination
is based on the following hypotheses:

III. The maximum stress in uniaxial compression, fc, is reached when the volumetric strain, ev, is equal to
zero, as illustrated in Fig. 7.

III. The volumetric plastic strain at maximum stress in uniaxial compression is the value of the hardening
parameter when the maximum stress is reached, and is also used for all other stress states.

III. The inclination of the total plastic strain is equal to the gradient of the plastic potential within the same
state of loading (see Fig. 8).

Hypothesis I is supported by experimental observations reported by Kupfer et al. (1969), van Mier
(1986) and Imran (1994). Here, the load resistance in uniaxial compression was obtained at minimum
volume, when the volumetric strain becomes equal to zero. However, the experimental results are depen-
dent on boundary conditions, measurement techniques and the material composition.
Hypothesis II is very fundamental within the proposed theory. Experimental results regarding the lateral

deformation capacity of confined specimens show a wide scatter. However, experimental results reported by
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Imran (1994), Smith (1985) and Kotsovos and Newman (1980) show that, with increasing confinement, the
inelastic deformation capacity in axial and lateral directions is increased (see also Figs. 14 and 18).

Fig. 7. Axial strain versus axial stress and volumetric strain for concrete in uniaxial and triaxial compression.

Fig. 8. Split of the plastic strain vector into a deviatoric part and a volumetric part. The direction of the plastic strain is equal to the

inclination of the plastic strain increment (see hypothesis III).
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The inclination of the plastic strain increments during monotonic loading was studied by Smith (1985).
Even though a change of inclination at the beginning of monotonic loading was observed, hypothesis III
seems to be generally valid. Without hypothesis III, this change of the inclination of the volumetric plastic
strain might be described. However, if the inclination changes, the two parameters A and B of the plastic
potential must be determined by means of the integral of the plastic flow, which complicates the calibration.
However, the agreement of the model prediction with experimental results (see Section 5) might be im-
proved.
The two parameters A and B of the plastic potential are determined by means of the axial strain in

uniaxial compression at maximum stress and the axial strain in triaxial compression at maximum stress, as
illustrated in Fig. 7.
The calibration is carried out in the following steps:
1. The plastic strain states for the uniaxial stress state and the triaxial stress state are calculated.

(a) Uniaxial plastic strain state
The axial plastic strain component is equal to the axial total strain component minus the elastic part:

ep33 ¼ e33 �
�
� fc

E

�
ð26Þ

and the lateral plastic strain is determined as

ep11 ¼ ep22 ¼ � 1
2

e33 � m
fc
E
: ð27Þ

The volumetric plastic strain is thus equal to the elastic volumetric strain; i.e. the volumetric strain equals
zero.

epv ¼ ep11 þ ep22 þ ep33 ¼
fc
E
1ð � 2mÞ: ð28Þ

(b) Triaxial plastic strain state
The axial component results as

ep33 ¼ e33 �
1

E
r33ð � m r11ð þ r22ÞÞ ð29Þ

and the lateral component as

ep11 ¼ ep22 ¼
epv � ep33
2

: ð30Þ

2. By means of the plastic strain states in uniaxial and triaxial compression, the inclinations w1 and w2
(see Figs. 8 and 9) can be determined to be

w ¼
ffiffiffi
2

p
ep33 � ep11ð Þ
epv

ð31Þ

for the plastic strain state in uniaxial compression and triaxial compression.
3. The unified length of the deviatoric stress vector is determined as

q1 ¼
ffiffiffi
2

3

r
ð32Þ

for uniaxial compression, and

q2 ¼
ffiffiffi
2

3

r
r11 � r33ð Þ

fc
ð33Þ
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for triaxial compression.
4. The derivation of the plastic potential in Eq. (8) with respect to the unified deviatoric lengths q1 and q2

is given by the inclinations w1 and w2 in Eq. (31) as

ogðq; nÞ
oq

¼ �2Aq � B ¼ w:

Thus, the two parameters for the plastic potential are determined as

A ¼ w2 � w1ð Þ
2 q1 � q2ð Þ ð34Þ

and

B ¼ q1
w1 � w2ð Þ
q1 � q2

� w1: ð35Þ

In addition to the two parameters of the plastic potential, we require the Young modulus, E, the Poisson
ratio, m, the stress–strain curve in uniaxial compression, the uniaxial compressive strength, fc, the uniaxial
tensile strength, ft and the eccentricity e. The last-named parameter determines the ratio of uniaxial and
equibiaxial compressive strengths, and depends on the ratio of uniaxial compressive strength to uniaxial
tensile strength fc=ft, as illustrated in Fig. 10.

5. Comparison with experimental results

The response of the constitutive model is compared to experimental results from uniaxial, biaxial and
triaxial compression tests. In Figs. 11–13 the yield surface at ultimate stress is compared to experimental
results reported by Kupfer et al. (1969), Mills and Zimmerman (1970), Linse and Aschl (1976), Smith
(1985), Scholz et al. (1995) and Imran (1994). Here, the comparison is made in the deviatoric plane, the q–n
plane and the r1–r2 plane, illustrating the representation for biaxial stress states. For the calibration of the

Fig. 9. Change of the inclination of the plastic strain increment along the compressive meridian, depending on the hydrostatic stress

state.
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yield surface, the ratio of the strengths in uniaxial compression and uniaxial tension was set to fc=ft ¼ 10
and the ratio of equibiaxial compression to uniaxial compression to fbc=fc ¼ 1:16, which corresponds to an
eccentricity parameter of e ¼ 0:52.

Fig. 11. Comparison of the yield condition at maximum stress to experimental results in the deviatoric plane.

Fig. 10. Relation of the eccentricity parameter e to the biaxial strength fbc. As input, the ratio of the strengths in uniaxial compression
and uniaxial tension, fc=ft, is required.
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Furthermore, the representation of the constitutive model was compared to multiaxial stress–strain re-
lations from experiments reported by Imran (1994) as shown in Fig. 14. The parameters of the model were
set to A ¼ 21:22, B ¼ �31:46, E ¼ 30 GPa, m ¼ 0:15, fc ¼ 47:4 MPa, ft ¼ 4:74 MPa and e ¼ 0:52. Here, the

Fig. 12. Comparison of the yield condition in the q–n plane to experimental results reported by Smith (1985), Mills and Zimmerman
(1970), Scholz et al. (1995), Linse and Aschl (1976) and Imran (1994).

Fig. 13. Comparison of the yield criterion to experimental results in the r1–r2 plane.
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two parameters of the plastic potential (A and B) were calibrated by means of the axial strain in uniaxial
compression and multiaxial compression with a lateral confinement of r11 ¼ r22 ¼ 8:6 MPa.
One of the key issues in this study is the representation of the behaviour of concrete in uniaxial, biaxial

and triaxial compression with a single calibration. Therefore, the response of the constitutive model was
compared to biaxial compression tests reported by Kupfer et al. (1969) by means of the same set of pa-

Fig. 14. Triaxial compression tests from Imran (1994) compared to the constitutive model. (Seven confinement levels from 0 to 43 MPa

are shown.)

Fig. 15. Uniaxial compression tests (r11=r22 ¼ 1:0=0:0) reported by Kupfer et al. (1969) compared to the model prediction.
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rameters as used for the triaxial compression tests reported by Imran (1994). The results had to be unified
because of the different types of concrete used in the two test series. They are shown in Figs. 15–17.
Additionally, results of triaxial compression tests reported by Kotsovos and Newman (1980) were

compared to the prediction of the model in Fig. 18. The model parameters were set to A ¼ 15:84,
B ¼ �23:34, E ¼ 30 MPa, m ¼ 0:15, fc ¼ 46:9 MPa, ft ¼ 4:69 MPa and e ¼ 0:52. The two parameters of the
plastic potential were determined by means of the axial strain at maximum stress in uniaxial compression,
which was assumed to be 2.5 per mille, and the axial strain at a confinement level of 18 MPa.

Fig. 16. Equibiaxial compression tests (r11=r22 ¼ 1:0=1:0) reported by Kupfer et al. (1969) compared to the model prediction.

Fig. 17. Biaxial compression test (r11=r22 ¼ 1:0=0:5) reported by Kupfer et al. (1969) compared to the model prediction.
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Finally, results from experiments obtained at the US Army Engineers Waterways Experiment Station
(USAE-WES) and reported by Ba�zzant et al. (1996) were compared to the model prediction, as shown in
Fig. 19. In these experiments, concrete cylinders were subjected to high confining lateral stresses up to a
magnitude of 400 MPa. The model parameters were calibrated to A ¼ 13:73, B ¼ �17:38, E ¼ 35 MPa,
m ¼ 0:18, fc ¼ 45:5 MPa, ft ¼ 4:55 MPa and e ¼ 0:52. The two parameters of the plastic potential were
determined by means of the axial strain at maximum stress in uniaxial compression, and the axial strain at a
confinement of 20 MPa.

Fig. 18. Results from triaxial compression tests reported by Kotsovos and Newman (1980) compared to the prediction of the con-

stitutive model.

Fig. 19. Triaxial compression tests (USAE-WES, taken from Ba�zzant et al. (1996)) compared to the model prediction.
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As can be seen in Figs. 11–19, the results of the constitutive model concerning the prediction of both
strength and deformations are in good agreement with the experimental results.

6. Conclusion

A plasticity theory to describe the behaviour of plain concrete in multiaxial compression is proposed.
The model predicts the load resistance and the deformation capacity of plain concrete in uniaxial, biaxial
and triaxial compression by means of one calibration.
The novel hardening law is based on the volumetric plastic strain as hardening parameter. In combi-

nation with a non-linear plastic potential, the increase in the deformation capacity due to multiaxial
compression can be described. For the calibration of the plastic potential only two parameters are required,
as no additional scaling or confinement function is needed.
The hardening law was combined with an extension of the Hoek and Brown failure criterion and im-

plemented by means of an implicit backward-Euler algorithm. It is shown that the formulation is simplified
by using the volumetric plastic strain as the hardening parameter.
Uniaxial, biaxial and triaxial compression tests are reproduced by means of the model. Experimental

results for strength and deformation behaviour were found to be in good agreement with the model pre-
diction.
The phenomenon of localization of deformations in multiaxial compression as reported by van Mier

(1986) is not considered in this theory. However, a combination of the hardening law with the fracture
energy of concrete in compression seems promising and will be pursued in further studies.
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